Устройства плавного пуска электродвигателя: функции, виды и стоимость решений
Недостатки электродвигателя, такие как высокий пусковой ток и большая нагрузка на механические узлы приводимого в действие оборудования, часто возникают при запуске. Решением этих проблем является применение устройств плавного пуска (УПП). В данной статье мы расскажем о том, как выбрать УПП и какие задачи оно может решить.
В современном мире скорости, производительности и эффективности, электродвигатели имеют множество различных типов — от внутреннего сгорания до ядерных и пневматических. Но, выбор промышленности пал на асинхронные двигатели переменного тока, благодаря их простоте в конструкции, стабильности работы, высокой эффективности и бесшумности. Однако, традиционные асинхронные двигатели имеют недостатки в момент запуска. Высокий пусковый ток создает сильную нагрузку на питающую сеть, что может привести к снижению качества энергии и возникновению проблем в работе оборудования, подключенного к сети. Кроме того, резкий рывок при запуске сокращает срок службы механических узлов приводимого в действие оборудования.
Решением проблем являются устройства плавного пуска, которые позволяют избежать высокого пускового тока и снижения нагрузки на механические узлы оборудования. Устройства плавного пуска подходят для всех видов электродвигателей асинхронного типа. Выбор конкретного устройства плавного пуска зависит от ряда факторов, включая мощность и тип двигателя, требования к производительности и экологической безопасности. Устройства плавного пуска могут сократить расходы на энергию и увеличить срок службы механических узлов оборудования, что делает их необходимыми для бесперебойной работы промышленности.
УПП: возможности и функции
Устройство плавного пуска (УПП) является эффективным способом решения проблемы скачкообразной подачи напряжения питания на двигатель. Обычно напряжение подается на двигатель с нулевого до номинального значения, это вызывает увеличение тока до шести, восьми или даже до 10-12 кратного увеличения номинального тока потребления. Это значительно усложняет запуск двигателя и может привести к повреждению оборудования и дополнительным финансовым затратам.
УПП позволяет решить проблему скачкообразной подачи напряжения, используя плавную подачу напряжения и разгон двигателя до номинальных режимов. Это позволяет избежать высоких пусковых токов, снизить вероятность перегрева электродвигателей, повысить их срок службы, а также устранить рывки в механической части электропривода при запуске и гидравлические удары в трубопроводах.
Применение УПП имеет ряд преимуществ, однако на практике не всегда мощности источника питания достаточно для обеспечения высокого тока. В этом случае нужно принимать дополнительные меры для сохранения стабильности питания.
Таким образом, УПП - это важное устройство, которое позволяет эффективно решить проблему скачкообразной подачи напряжения на электродвигатель и избежать поломок оборудования.
Устройство плавного пуска асинхронного электродвигателя работает по принципу использования тиристоров - полупроводниковых устройств, которые способны проводить ток после получения управляющего напряжения и "закрываться" при прохождении значения тока через ноль. Тиристоры сгруппированы по симисторной схеме для каждой фазы трехфазной системы. Управляющее напряжение, которое "открывает" тиристоры, подается на их электроды точно в нужный момент времени. Таким образом, напряжение на силовых клеммах электродвигателя можно регулировать, а крутящий момент зависит от квадрата приложенного напряжения. Это позволяет регулировать механические нагрузки и плавно останавливать электродвигатели, приводящие в действие низкоинерционные нагрузки. Однако, устройства плавного пуска имеют несколько недостатков. Они могут работать только с невысокими нагрузками или для запуска двигателя в холостую. Кроме того, при увеличении времени запуска может возникнуть опасность перегрева двигателя и полупроводниковых элементов устройства плавного пуска. Кроме того, снижение напряжения приведет к снижению крутящего момента на валу электродвигателя. Более совершенные устройства плавного пуска не имеют указанных недостатков. Они подразделяются на амплитудные и частотные, причем последние более дорогие и сложные в установке и наладке. Однако их использование оправдывает себя в условиях, когда необходимо изменить скорость вращения электродвигателя для решения задачи.Варианты УПП
Существует два основных типа устройств плавного пуска (УПП):
1. Регуляторы напряжения без функции обратной связи.
2. Регуляторы напряжения с функцией обратной связи.
Обратимся к каждому типу подробнее.
УПП без функции обратной связи - наиболее распространенный тип. Здесь регулировка может быть выполнена по двум или трем фазам, но только в соответствии с предустановленной программой, указанной пользователем, которая содержит информацию о времени запуска и начальном напряжении. Данный тип устройств позволяет уменьшить пусковой ток и момент, а также обеспечивает возможность плавной остановки, но не способен регулировать момент в зависимости от нагрузки на двигатель.
УПП с функцией обратной связи - это улучшенный вариант предыдущей группы. Он контролирует фазовый сдвиг между напряжением и током в обмотках статора и использует полученные данные для регулировки напряжения на клеммах двигателя таким образом, чтобы запуск произошел гарантированно с наименьшим пусковым током и достаточным механическим крутящим моментом. Также полученные данные используются для защиты от перегрузки, дисбаланса фаз и т.д.
Продвижение не стоит на месте. Существуют УПП, которые имеют цепи отслеживания и могут контролировать нагрузку в каждый конкретный момент времени. Они считаются наиболее подходящими для приводов с тяжелыми и очень тяжелыми пусковыми режимами, для которых рекомендуется использовать преобразователи частоты. Кроме того, такие УПП могут эффективно снизить энергопотребление.
Применение устройств плавного пуска
В настоящее время устройства плавного пуска (УПП) широко используются во всех областях, где работают электродвигатели. Однако, при выборе конкретного устройства необходимо учитывать нагрузку на двигатель и частоту его запусков.
Если нагрузка на двигатель невелика, а запуск происходит редко (например, в шлифовальных станках, некоторых вентиляторах, роторных дробилках, вакуумных насосах), то для этих целей подойдут регуляторы без обратной связи или регуляторы пускового момента.
В случае, когда требуется работа с высокой нагрузкой, с частым и инерционным запуском (как, например, в ленточной пиле, центрифуге, сепараторе, распылителе, лебедке, вертикальном конвейере), целесообразно выбирать регуляторы напряжения с обратной связью и, возможно, с запасом по номиналу.
Однако следует помнить, что в Европе законодательно запрещено запускать электродвигатели мощностью 15 кВт и выше, если они не оснащены устройствами плавного пуска.
Цены на софтстартеры и их нестабильность в последние годы являются неотъемлемыми компонентами рынка. По словам экспертов, подобное явление вызвано высокой стоимостью импортных товаров, в том числе и продукции многих отечественных компаний, производящихся за рубежом или изоляционных материалов, выпускаемых в России на основе импортных комплектующих. Из-за нестабильности валют наблюдаются колебания цен на софтстартеры.
Уровень стоимости софтстартеров напрямую зависит от их характеристик. Некоторые модели, начиная от 7 тысяч рублей, могут иметь заданный номинальный ток. Но более мощные модели, стоимость которых может достигать 700 тысяч рублей, позволяют равномерно распределить ток до 1200 А.
Фото: freepik.com